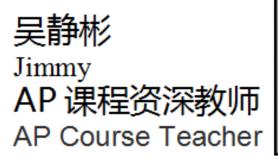


AP[®] Calculus AB 2011 Scoring Guidelines



中国区咨询热线: 4000-992-968

Add:深圳市罗湖区深南路地王大厦 1313 室 56 the Vale, London, NW11 8SJ, UK Tel:13418602677 QQ: 320645807 E-mail:wujingbin@hqjystudio.com www.hqjystudio.com

最新最全资料免费共享欢迎扫码入群

Question 1

For $0 \le t \le 6$, a particle is moving along the *x*-axis. The particle's position, x(t), is not explicitly given. The velocity of the particle is given by $v(t) = 2\sin(e^{t/4}) + 1$. The acceleration of the particle is given by

 $a(t) = \frac{1}{2}e^{t/4}\cos(e^{t/4})$ and x(0) = 2.

- (a) Is the speed of the particle increasing or decreasing at time t = 5.5? Give a reason for your answer.
- (b) Find the average velocity of the particle for the time period $0 \le t \le 6$.
- (c) Find the total distance traveled by the particle from time t = 0 to t = 6.
- (d) For $0 \le t \le 6$, the particle changes direction exactly once. Find the position of the particle at that time.

(a)	$v(5.5) = -0.45337, \ a(5.5) = -1.35851$	2 : conclusion with reason
	The speed is increasing at time $t = 5.5$, because velocity and acceleration have the same sign.	
(b)	Average velocity $=\frac{1}{6}\int_0^6 v(t) dt = 1.949$	$2: \begin{cases} 1: integral \\ 1: answer \end{cases}$
(c)	Distance $= \int_0^6 v(t) dt = 12.573$	$2: \begin{cases} 1: integral \\ 1: answer \end{cases}$
(d)	v(t) = 0 when $t = 5.19552$. Let $b = 5.19552$. v(t) changes sign from positive to negative at time $t = b$. $x(b) = 2 + \int_0^b v(t) dt = 14.134$ or 14.135	3: $\begin{cases} 1 : \text{ considers } v(t) = 0\\ 1 : \text{ integral}\\ 1 : \text{ answer} \end{cases}$

Question 2

t (minutes)	0	2	5	9	10
H(t) (degrees Celsius)	66	60	52	44	43

As a pot of tea cools, the temperature of the tea is modeled by a differentiable function H for $0 \le t \le 10$, where time t is measured in minutes and temperature H(t) is measured in degrees Celsius. Values of H(t) at selected values of time t are shown in the table above.

- (a) Use the data in the table to approximate the rate at which the temperature of the tea is changing at time t = 3.5. Show the computations that lead to your answer.
- (b) Using correct units, explain the meaning of $\frac{1}{10}\int_0^{10} H(t) dt$ in the context of this problem. Use a trapezoidal sum with the four subintervals indicated by the table to estimate $\frac{1}{10}\int_0^{10} H(t) dt$.
- (c) Evaluate $\int_0^{10} H'(t) dt$. Using correct units, explain the meaning of the expression in the context of this problem.
- (d) At time t = 0, biscuits with temperature 100°C were removed from an oven. The temperature of the biscuits at time t is modeled by a differentiable function B for which it is known that $B'(t) = -13.84e^{-0.173t}$. Using the given models, at time t = 10, how much cooler are the biscuits than the tea?

(a) $H'(3.5) \approx \frac{H(5) - H(2)}{5 - 2}$ = $\frac{52 - 60}{3}$ = -2.666 or -2.667 degrees Celsius per minute	1 : answer
(b) $\frac{1}{10} \int_0^{10} H(t) dt$ is the average temperature of the tea, in degrees Celsius, over the 10 minutes. $\frac{1}{10} \int_0^{10} H(t) dt \approx \frac{1}{10} \left(2 \cdot \frac{66 + 60}{2} + 3 \cdot \frac{60 + 52}{2} + 4 \cdot \frac{52 + 44}{2} + 1 \cdot \frac{44 + 43}{2} \right)$ = 52.95	3 :
(c) $\int_0^{10} H'(t) dt = H(10) - H(0) = 43 - 66 = -23$ The temperature of the tea drops 23 degrees Celsius from time $t = 0$ to time $t = 10$ minutes.	2 : $\begin{cases} 1 : value of integral \\ 1 : meaning of expression \end{cases}$
(d) $B(10) = 100 + \int_0^{10} B'(t) dt = 34.18275;$ $H(10) - B(10) = 8.817$ The biscuits are 8.817 degrees Celsius cooler than the tea.	$3: \begin{cases} 1 : \text{ integrand} \\ 1 : \text{ uses } B(0) = 100 \\ 1 : \text{ answer} \end{cases}$

Question 3

1-

0

R

 $\rightarrow x$

Let R be the region in the first quadrant enclosed by the graphs of $f(x) = 8x^3$ and $g(x) = \sin(\pi x)$, as shown in the figure above.

- (a) Write an equation for the line tangent to the graph of f at $x = \frac{1}{2}$.
- (b) Find the area of *R*.
- (c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is rotated about the horizontal line y = 1.

(a)
$$f(\frac{1}{2}) = 1$$

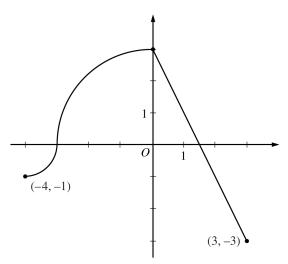
 $f'(x) = 24x^2$, so $f'(\frac{1}{2}) = 6$
An equation for the tangent line is $y = 1 + 6\left(x - \frac{1}{2}\right)$.
(b) Area $= \int_0^{1/2} (g(x) - f(x)) dx$
 $= \int_0^{1/2} (\sin(\pi x) - 8x^3) dx$
 $= \left[-\frac{1}{\pi} \cos(\pi x) - 2x^4 \right]_{x=0}^{x=1/2}$
 $= -\frac{1}{8} + \frac{1}{\pi}$
(c) $\pi \int_0^{1/2} ((1 - f(x))^2 - (1 - g(x))^2) dx$
 $= \pi \int_0^{1/2} ((1 - 8x^3)^2 - (1 - \sin(\pi x))^2) dx$
2 : $\begin{cases} 1 : integrand \\ 2 : antiderivative \\ 1 : answer \end{cases}$
3 : $\begin{cases} 1 : limits and constant \\ 2 : integrand \end{cases}$

Question 4

The continuous function *f* is defined on the interval $-4 \le x \le 3$. The graph of f consists of two quarter circles and one line segment, as shown in the figure above.

Let
$$g(x) = 2x + \int_0^x f(t) dt$$
.

- (a) Find g(-3). Find g'(x) and evaluate g'(-3).
- (b) Determine the x-coordinate of the point at which g has an absolute maximum on the interval $-4 \le x \le 3$. Justify your answer.
- (c) Find all values of x on the interval -4 < x < 3 for which the graph of g has a point of inflection. Give a reason for your answer.



Graph of f

(d) Find the average rate of change of f on the interval $-4 \le x \le 3$. There is no point c, -4 < c < 3, for which f'(c) is equal to that average rate of change. Explain why this statement does not contradict the Mean Value Theorem.

(a)	$g(-3) = 2(-3) + \int_0^{-3} f(t) dt = -6 - \frac{9\pi}{4}$ $g'(x) = 2 + f(x)$ $g'(-3) = 2 + f(-3) = 2$	$3: \begin{cases} 1: g(-3) \\ 1: g'(x) \\ 1: g'(-3) \end{cases}$
(b)	$g'(x) = 0$ when $f(x) = -2$. This occurs at $x = \frac{5}{2}$. $g'(x) > 0$ for $-4 < x < \frac{5}{2}$ and $g'(x) < 0$ for $\frac{5}{2} < x < 3$. Therefore g has an absolute maximum at $x = \frac{5}{2}$.	3 : $\begin{cases} 1 : \text{ considers } g'(x) = 0\\ 1 : \text{ identifies interior candidate}\\ 1 : \text{ answer with justification} \end{cases}$
(c)	g''(x) = f'(x) changes sign only at $x = 0$. Thus the graph of g has a point of inflection at $x = 0$.	1 : answer with reason
(d)	The average rate of change of f on the interval $-4 \le x \le 3$ is $\frac{f(3) - f(-4)}{3 - (-4)} = -\frac{2}{7}$. To apply the Mean Value Theorem, f must be differentiable at each point in the interval $-4 < x < 3$. However, f is not differentiable at $x = -3$ and $x = 0$.	2 : { 1 : average rate of change 1 : explanation

Question 5

At the beginning of 2010, a landfill contained 1400 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation $\frac{dW}{dt} = \frac{1}{25}(W - 300)$ for the next 20 years. W is measured in tons, and t is measured in years from the start of 2010.

- (a) Use the line tangent to the graph of *W* at t = 0 to approximate the amount of solid waste that the landfill contains at the end of the first 3 months of 2010 (time $t = \frac{1}{4}$).
- (b) Find $\frac{d^2W}{dt^2}$ in terms of *W*. Use $\frac{d^2W}{dt^2}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the amount of solid waste that the landfill contains at time $t = \frac{1}{4}$.

(c) Find the particular solution W = W(t) to the differential equation $\frac{dW}{dt} = \frac{1}{25}(W - 300)$ with initial condition W(0) = 1400.

(a)
$$\frac{dW}{dt}\Big|_{t=0} = \frac{1}{25}(W(0) - 300) = \frac{1}{25}(1400 - 300) = 44$$

The tangent line is $y = 1400 + 44t$.
 $W\left(\frac{1}{4}\right) \approx 1400 + 44\left(\frac{1}{4}\right) = 1411$ tons
(b)
$$\frac{d^2W}{dt^2} = \frac{1}{25}\frac{dW}{dt} = \frac{1}{625}(W - 300) \text{ and } W \ge 1400$$

Therefore
$$\frac{d^2W}{dt^2} > 0 \text{ on the interval } 0 \le t \le \frac{1}{4}.$$

The answer in part (a) is an underestimate.
(c)
$$\frac{dW}{dt} = \frac{1}{25}(W - 300)$$

$$\int \frac{1}{W - 300} dW = \int \frac{1}{25} dt$$

$$\ln|W - 300| = \frac{1}{25}t + C$$

$$\ln(1400 - 300) = \frac{1}{25}(0) + C \Rightarrow \ln(1100) = C$$

$$W - 300 = 1100e^{\frac{1}{25}t}, \quad 0 \le t \le 20$$

(a)
$$\frac{1}{25} = \frac{1}{25}(W - 300)$$

$$\frac{1}{25}(W - 300) = \frac{1}{25}(0) + C \Rightarrow \ln(1100) = C$$

$$\frac{1}{25}(0) + C \Rightarrow \ln(1100) = C$$

$$\frac{1}{25}(1 - 1 - 0 - 0 - 0) \text{ if no constant of integration}}$$

Note:
$$\frac{1}{25}(1 - 1 - 0 - 0 - 0) \text{ if no constant of integration}}$$

$$\frac{1}{2}(1 - 1 - 0 - 0 - 0) \text{ if no separation of variables}$$

Question 6

Let f be a function defined by $f(x) = \begin{cases} 1 - 2\sin x & \text{for } x \le 0 \\ e^{-4x} & \text{for } x > 0. \end{cases}$

- (a) Show that f is continuous at x = 0.
- (b) For $x \neq 0$, express f'(x) as a piecewise-defined function. Find the value of x for which f'(x) = -3.

(c) Find the average value of f on the interval [-1, 1].

(a)	$\lim_{x \to 0^{-}} (1 - 2\sin x) = 1$	2 : analysis
	$\lim_{x \to 0^+} e^{-4x} = 1$	
	f(0) = 1	
	So, $\lim_{x \to 0} f(x) = f(0)$.	
	Therefore f is continuous at $x = 0$.	
(b)	$f'(x) = \begin{cases} -2\cos x & \text{for } x < 0\\ -4e^{-4x} & \text{for } x > 0 \end{cases}$ $-2\cos x \neq -3 \text{ for all values of } x < 0.$ $-4e^{-4x} = -3 \text{ when } x = -\frac{1}{4}\ln\left(\frac{3}{4}\right) > 0.$	$3: \begin{cases} 2: f'(x) \\ 1: \text{ value of } x \end{cases}$
	Therefore $f'(x) = -3$ for $x = -\frac{1}{4}\ln\left(\frac{3}{4}\right)$.	
(c)	$\int_{-1}^{1} f(x) dx = \int_{-1}^{0} f(x) dx + \int_{0}^{1} f(x) dx$ = $\int_{-1}^{0} (1 - 2\sin x) dx + \int_{0}^{1} e^{-4x} dx$ = $\left[x + 2\cos x \right]_{x=-1}^{x=0} + \left[-\frac{1}{4} e^{-4x} \right]_{x=0}^{x=1}$ = $(3 - 2\cos(-1)) + \left(-\frac{1}{4} e^{-4} + \frac{1}{4} \right)$	4: $\begin{cases} 1: \int_{-1}^{0} (1-2\sin x) dx \text{ and } \int_{0}^{1} e^{-4x} dx \\ 2: \text{ antiderivatives} \\ 1: \text{ answer} \end{cases}$
	Average value $= \frac{1}{2} \int_{-1}^{1} f(x) dx$ $= \frac{13}{8} - \cos(-1) - \frac{1}{8}e^{-4}$	