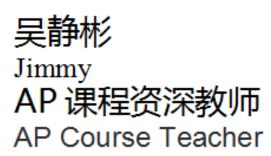


AP[®] Calculus AB 2010 Scoring Guidelines



中国区咨询热线: 4000-992-968

Add:深圳市罗湖区深南路地王大厦 1313 室 56 the Vale, London, NW11 8SJ, UK Tel:13418602677 QQ: 320645807 E-mail:wujingbin@hqjystudio.com www.hqjystudio.com

最新最全资料免费共享欢迎扫码入群

Question 1

There is no snow on Janet's driveway when snow begins to fall at midnight. From midnight to 9 A.M., snow accumulates on the driveway at a rate modeled by $f(t) = 7te^{\cos t}$ cubic feet per hour, where t is measured in hours since midnight. Janet starts removing snow at 6 A.M. (t = 6). The rate g(t), in cubic feet per hour, at which Janet removes snow from the driveway at time t hours after midnight is modeled by

$$g(t) = \begin{cases} 0 & \text{for } 0 \le t < 6\\ 125 & \text{for } 6 \le t < 7\\ 108 & \text{for } 7 \le t \le 9 \,. \end{cases}$$

- (a) How many cubic feet of snow have accumulated on the driveway by 6 A.M.?
- (b) Find the rate of change of the volume of snow on the driveway at 8 A.M.
- (c) Let h(t) represent the total amount of snow, in cubic feet, that Janet has removed from the driveway at time *t* hours after midnight. Express *h* as a piecewise-defined function with domain $0 \le t \le 9$.

(d) How many cubic feet of snow are on the driveway at 9 A.M.?

(a)	$\int_{0}^{6} f(t) dt = 142.274 \text{ or } 142.275 \text{ cubic feet}$	$2: \begin{cases} 1: \text{ integral} \\ 1: \text{ answer} \end{cases}$
(b)	Rate of change is $f(8) - g(8) = -59.582$ or -59.583 cubic feet per hour.	1 : answer
(c)	h(0) = 0 For $0 < t \le 6$, $h(t) = h(0) + \int_0^t g(s) ds = 0 + \int_0^t 0 ds = 0$. For $6 < t \le 7$, $h(t) = h(6) + \int_6^t g(s) ds = 0 + \int_6^t 125 ds = 125(t-6)$. For $7 < t \le 9$, $h(t) = h(7) + \int_7^t g(s) ds = 125 + \int_7^t 108 ds = 125 + 108(t-7)$. Thus, $h(t) = \begin{cases} 0 & \text{for } 0 \le t \le 6\\ 125(t-6) & \text{for } 6 < t \le 7\\ 125 + 108(t-7) & \text{for } 7 < t \le 9 \end{cases}$	$3: \begin{cases} 1: h(t) \text{ for } 0 \le t \le 6\\ 1: h(t) \text{ for } 6 < t \le 7\\ 1: h(t) \text{ for } 7 < t \le 9 \end{cases}$
(d)	Amount of snow is $\int_{0}^{9} f(t) dt - h(9) = 26.334$ or 26.335 cubic feet.	$3: \begin{cases} 1: \text{ integral} \\ 1: h(9) \\ 1: \text{ answer} \end{cases}$

Question 2

t (hours)	0	2	5	7	8
E(t) (hundreds of entries)	0	4	13	21	23

A zoo sponsored a one-day contest to name a new baby elephant. Zoo visitors deposited entries in a special box between noon (t = 0) and 8 P.M. (t = 8). The number of entries in the box t hours after noon is modeled by a differentiable function E for $0 \le t \le 8$. Values of E(t), in hundreds of entries, at various times t are shown in the table above.

- (a) Use the data in the table to approximate the rate, in hundreds of entries per hour, at which entries were being deposited at time t = 6. Show the computations that lead to your answer.
- (b) Use a trapezoidal sum with the four subintervals given by the table to approximate the value of $\frac{1}{8} \int_{0}^{8} E(t) dt$.

Using correct units, explain the meaning of $\frac{1}{8}\int_{0}^{8} E(t) dt$ in terms of the number of entries.

- (c) At 8 P.M., volunteers began to process the entries. They processed the entries at a rate modeled by the function P, where $P(t) = t^3 30t^2 + 298t 976$ hundreds of entries per hour for $8 \le t \le 12$. According to the model, how many entries had not yet been processed by midnight (t = 12)?
- (d) According to the model from part (c), at what time were the entries being processed most quickly? Justify your answer.

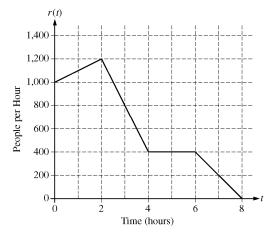
(a) $E'(6) \approx \frac{E(6)}{2}$	$\frac{7) - E(5)}{7 - 5} = 4$ hundred entries per hour	1 : answer
(b) $\frac{1}{8} \int_{0}^{8} E(t) dt$ $\frac{1}{8} \left(2 \cdot \frac{E(0)}{100000000000000000000000000000000000$	$\frac{+E(2)}{2} + 3 \cdot \frac{E(2) + E(5)}{2} + 2 \cdot \frac{E(5) + E(7)}{2} + 1 \cdot \frac{E(7) + E(8)}{2} \right)$	3 :
0.00	t is the average number of hundreds of entries in the box	
between noo	on and 8 P.M.	
(c) $23 - \int_{8}^{12} P($	t) $dt = 23 - 16 = 7$ hundred entries	$2: \begin{cases} 1 : integral \\ 1 : answer \end{cases}$
(d) $P'(t) = 0$ v	when $t = 9.183503$ and $t = 10.816497$.	(1: considers P'(t) = 0
		$3: \begin{cases} 1: identifies candidates \end{cases}$
$\frac{t}{8}$	0	3: $\begin{cases} 1 : \text{considers } P'(t) = 0\\ 1 : \text{identifies candidates}\\ 1 : \text{answer with justification} \end{cases}$
9.183503	5.088662	
10.816497	2.911338	
12	8	
End also and 1		

Entries are being processed most quickly at time t = 12.

Question 3

There are 700 people in line for a popular amusement-park ride when the ride begins operation in the morning. Once it begins operation, the ride accepts passengers until the park closes 8 hours later. While there is a line, people move onto the ride at a rate of 800 people per hour. The graph above shows the rate, r(t), at which people arrive at the ride throughout the day. Time t is measured in hours from the time the ride begins operation.

- (a) How many people arrive at the ride between t = 0 and t = 3? Show the computations that lead to your answer.
- (b) Is the number of people waiting in line to get on the ride increasing or decreasing between t = 2 and t = 3? Justify your answer.

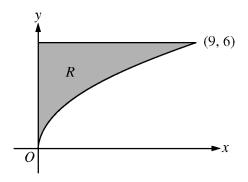


- (c) At what time t is the line for the ride the longest? How many people are in line at that time? Justify your answers.
- (d) Write, but do not solve, an equation involving an integral expression of r whose solution gives the earliest time t at which there is no longer a line for the ride.

(a)
$$\int_{0}^{3} r(t) dt = 2 \cdot \frac{1000 + 1200}{2} + \frac{1200 + 800}{2} = 3200 \text{ people}$$

(b) The number of people waiting in line is increasing because people move onto the ride at a rate of 800 people per hour and for $2 < t < 3$, $r(t) > 800$.
(c) $r(t) = 800 \text{ only at } t = 3$
For $0 \le t < 3$, $r(t) > 800$. For $3 < t \le 8$, $r(t) < 800$.
Therefore, the line is longest at time $t = 3$.
There are 700 + $3200 - 800 \cdot 3 = 1500$ people waiting in line at time $t = 3$.
(d) $0 = 700 + \int_{0}^{t} r(s) ds - 800t$
(e) $r(t) = 800 \text{ only at } t = 3$
(f) $r(t) = 800 \text{ only at } t = 3$
(g) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) = 800 \text{ only at } t = 3$
(h) $r(t) =$

Question 4



Let *R* be the region in the first quadrant bounded by the graph of $y = 2\sqrt{x}$, the horizontal line y = 6, and the *y*-axis, as shown in the figure above.

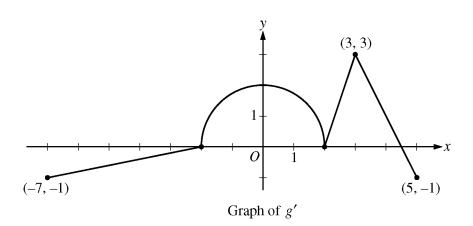
- (a) Find the area of R.
- (b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line y = 7.
- (c) Region *R* is the base of a solid. For each *y*, where $0 \le y \le 6$, the cross section of the solid taken perpendicular to the *y*-axis is a rectangle whose height is 3 times the length of its base in region *R*. Write, but do not evaluate, an integral expression that gives the volume of the solid.

Ι

(a) Area =
$$\int_{0}^{9} (6 - 2\sqrt{x}) dx = (6x - \frac{4}{3}x^{3/2})\Big|_{x=0}^{x=9} = 18$$

(b) Volume = $\pi \int_{0}^{9} ((7 - 2\sqrt{x})^{2} - (7 - 6)^{2}) dx$
(c) Solving $y = 2\sqrt{x}$ for x yields $x = \frac{y^{2}}{4}$.
Each rectangular cross section has area $\left(3\frac{y^{2}}{4}\right)\left(\frac{y^{2}}{4}\right) = \frac{3}{16}y^{4}$.
Volume = $\int_{0}^{6} \frac{3}{16}y^{4} dy$
 $3 : \begin{cases} 2 : \text{integrand} \\ 1 : \text{limits and constant} \end{cases}$
 $3 : \begin{cases} 2 : \text{integrand} \\ 1 : \text{limits and constant} \end{cases}$

Question 5



The function g is defined and differentiable on the closed interval [-7, 5] and satisfies g(0) = 5. The graph of y = g'(x), the derivative of g, consists of a semicircle and three line segments, as shown in the figure above.

- (a) Find g(3) and g(-2).
- (b) Find the *x*-coordinate of each point of inflection of the graph of y = g(x) on the interval -7 < x < 5. Explain your reasoning.
- (c) The function *h* is defined by $h(x) = g(x) \frac{1}{2}x^2$. Find the *x*-coordinate of each critical point of *h*, where -7 < x < 5, and classify each critical point as the location of a relative minimum, relative maximum, or neither a minimum nor a maximum. Explain your reasoning.

(a)
$$g(3) = 5 + \int_{0}^{3} g'(x) dx = 5 + \frac{\pi \cdot 2^{2}}{4} + \frac{3}{2} = \frac{13}{2} + \pi$$

 $g(-2) = 5 + \int_{0}^{-2} g'(x) dx = 5 - \pi$
(b) The graph of $y = g(x)$ has points of inflection at $x = 0$, $x = 2$,
and $x = 3$ because g' changes from increasing to decreasing at
 $x = 0$ and $x = 3$, and g' changes from decreasing to increasing at
 $x = 2$.
(c) $h'(x) = g'(x) - x = 0 \Rightarrow g'(x) = x$
On the interval $-2 \le x \le 2$, $g'(x) = \sqrt{4 - x^{2}}$.
On this interval, $g'(x) = x$ when $x = \sqrt{2}$.
The only other solution to $g'(x) = x$ is $x = 3$.
 $h'(x) = g'(x) - x > 0$ for $0 \le x < \sqrt{2}$
 $h'(x) = g'(x) - x \le 0$ for $\sqrt{2} < x \le 5$
Therefore h has a relative maximum at $x = \sqrt{2}$, and h has neither
a minimum nor a maximum at $x = 3$.

Question 6

Solutions to the differential equation $\frac{dy}{dx} = xy^3$ also satisfy $\frac{d^2y}{dx^2} = y^3(1+3x^2y^2)$. Let y = f(x) be a

particular solution to the differential equation $\frac{dy}{dx} = xy^3$ with f(1) = 2.

- (a) Write an equation for the line tangent to the graph of y = f(x) at x = 1.
- (b) Use the tangent line equation from part (a) to approximate f(1.1). Given that f(x) > 0 for 1 < x < 1.1, is the approximation for f(1.1) greater than or less than f(1.1)? Explain your reasoning.
- (c) Find the particular solution y = f(x) with initial condition f(1) = 2.

